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AbslraeL Self-avoiding walk on three-dimensional lattices a r e  flexible linear objects 
which can be self-entangled. We discuss several ways to measure entanglement complexity 
for n-srep maim, and p m e  inat hese mmpiexiiy measures tend to infinity yith n .  For 
small n ,  we use Monte Carlo methods to &mate and wmpare the ndependence of 
WO of these complexity measures. 

1. Introduction 

Linear polymer molecules in dilute solution are highly flexible and can be both 
self-entangled and entangled with other molecules. This paper is concerned 
with characterizing the degree of self-entanglement, and the dependence of self- 
entanglement on polymer length. The problem is of some practical importance 
because of the influence of polymer entanglement on crystallization behaviour (de 

entanglement of flow lines is related to the magnetic energy of flows in incompressible 
perfectly conducting fluids (Freedman 1988, Freedman and He 1991). 

If the molecule undergoes a ring closure reaction, the resulting ring polymer can 
be knotted, and questions about entanglement complexily can then be asked and (to 
some extent) answered using standard topological ideas from knot theoly. A question 
(Frisch and Wdsserman 1961, Delbruck 1962) which has attracted attention for thirty 
years iS: what is the probability of knot formation, as a function of the number n of 
monomers in the ring polymer? 

A convenient model for a ring polymer in dilute solution in a good solvent is 
an n-step self-avoiding polygon on a regular lattice, such as the simple cubic lattice 
Z3.  The knot probability for small n in this system has been studied using Monte 
Carlo methods (Vologodskii el al 1974, Janse van Rensburg and Whittington 1990), 
and the corresponding probiem for a continuum modei has aiso been investigated 
(Michels and Wiegel 1986, Koniaris and Muthukumar 1991). The consensus from 
these calculations is that, for moderate values of n, the knot probability is rather 
small. 
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It can be shown rigorously (Hammersley 1961) that the number p ,  of self-avoiding 
polygons behaves as 

and (Sumners and Whittington 1988, Pippenger 1989) that the number PO, of 
unknotted polygons behaves as 

(1.2) U - m n t o ( n )  P ,  - e 

with 0 < no < K so that the knot probability P(n) behaves as 

(1.3) p(,) = 1 - e-mnto(n)  

for some positive constant a. Hence the knot probability tends to unity (exponentially 
rapidly) as n goes to infinity. Similar asymptotic results hold for various continuum 
models of piecewise-linear polygons in R3 (Diao 1990, Diao et ai 1992). See also 
Frisch and Klempner (1970) and Kendall (1979). 

For polygons there are many possible measures of entanglement complexity, 
including crossing number, genus, unknotting number, span of a knot polynomial 
(such as the Alexander or Jones polynomial), the value of the Alexander polynomial, 
A(t),  at 1 = -1, etc. Soteros et ai (1992) have shown that each of these measures of 
entanglement complexity diverges as n goes to infinity. The proof of this statement 
relies on ‘tight’ trefoils appearing on long polygons with positive density, and the fact 
that these quantities add (or multiply) for trefoils. 

From a strictly topological point of view linear polymers are unknotted, and the 
arguments and numerical approaches used for the ring case cannot be directly applied 
to the linear case. This k because entanglement is a property of a pair of spaces, the 
three-dimensional ambient space and the one-dimensional subspace. If the subspace 
is a circle, the ambient space can be taken to be all of R3. On the other hand, if the 
subspace is an arc, the ambient 3-space used to define entanglement must be either 
carefully chosen or canonically defined by the walk itself (Sumners and Whittington 
1990). In section 2 we discuss several ways in which entanglement complexity can 
be defined for a self-avoiding walk model of a linear polymer, point out advantages 
and disadvantages of these schemes, and prove asymptotic results about them. In 
section 3 we apply some numerical tests to two of these, and then compare them by 
calculating the average measures of entanglement complexity for self-avoiding walks 
with n steps, as a function of n, using Monte Carlo methods. 

2. Measures of entanglement complexity 

We begin this section by discussing some results which bear on the entanglement 
complexity of self-avoiding walks, and which can be proved rigorously. Sumners and 
Whittington (1988) introduced the idea of a lolotfed arc. The lattice Z 3  consists 
of a vertex set, which is the set of integer points in R3, and an edge set which 
is the set of edges joining pairs of vertices which are unit distance apart. If we 
consider any finite self-avoiding walk on Z 3 ,  which we shall refer to as a paftem, 
then each vertex of the pattern has an associated dual 3-cell (a unit cube) with the 
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occupied vertex as its barycentre. The union of these dual 3-cells forms a canonical 
(uniquely determined by the pattern) neighbourhood of the  pattern in 3-space. This 
neighbourhood may be homeomorphic to a 3-ball, and we restrict our attention to 
patterns with this property. By extending the pattern by two ha[f-edges so that they 
intersect the boundary of the neighbourhood (which is homeomorphic to a 2-sphere), 
we ob& a (3,l) ball-pair in which the oriented 1-ball (the pattern together with the 
two additional half-edges) is properly embedded in the 3-ball. 'Iko (3,l) ball-paus 
are the Same oriented knot type if there is a homeomorphism of pairs from one to the 
other, such that the homeomorphism preserves the orientation of both the ambient 
3-ball and the arc. The standard unhotted ball-pair is the intersection of the z-axis 
with the usual unit ball (z2+yz+zz < 1) in R3. A (3,l) ball-pair is unlolotted if there 
is a homeomorphism of pairs of the ball-pair onto the unknotted ball-pair. If not, 
we call the pattern a knotted arc, and the (3,l) ball-pair determined by the pattern 
is a tight knot. If, in addition, there exists a self-avoiding walk on which (translates 
of) the pattern occur three times then the pattern is a K-pnltem. Figure 1 shows an 
explicit example of a K-pattern which corresponds to a trefoil knotted arc under the 
above neighbourhood construction. In fact (Soteros el a1 1992), every knot type can 
be represented by a K-pattern which forms a tight h o t ,  so Kesten's theorem (Kesten 
1963) can be used to prove the following theorem: 

Theorem 21. Every (3,l) ball-pair h o t  type appears as a knotted arc with positive 
density in all except exponentially few sufficiently long self-avoiding walks on Z 3 .  

If we now compute the Alexander polynomial A ( t ) ,  say, of the polygons obtained 
by joining up the ends of n-step self-avoiding walks, with a curve which does not enter 
any of the 3-balls associated with the knotted arcs, and average 4( -1)  over all such 
walks, this implies that 

(b?4 ( -1 ) )n  - (2.1) 

as n - 00. In fact the divergence is at least linear in n. 

Flgure 1. A knotted an: which is also a K-pattern. Figure 2 A pallem consisting of three knotted 
arcs. The squares represent h e  3-balls defined b, 
the arcs. 

This suggests that ho t ted  arcs might give a useful measure of entanglement 
complexity in self-avoiding walks. The first problem is that finding such arcs is 
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computationally very difficult. In addition, if one could find them, the entanglement 
complexity would be an 'underestimate', in some rather loose sense, since the walk 
will most likely contain other contributions to its entanglement. 

Instead, one needs a property of the complete walk, rather than a collection of 
terms corresponding to sub-walks. Suppose that we only consider unfokfed walks 
(Hammersley and Welsh 1962). We shall call a walk z-unfolded if the zcomponent 
of the first vertex is strictly less than that of any other vertex and if no vertex of the 

vertices i = 0,1,2, .  . . n and write (z;, y;, zi) for the coordinates of the ith vertex 
then a walk is z-unfolded if zo < z, < I,, for all i > 0. The walk shown in 
figure 1 is z-unfolded.) Unfolded walks can be uniquely completed to (3,l) ball-pairs 
which capture all of the entanglement complexity of the unfolded walk We add 
half-edges in the negative and positive z-direction to the first and last vertices of 
the walk and construct a I b a l l  with two parallel faces perpendicular to the z-axis, 
and four more faces (perpendicular to the remaining coordinate directions) so that 
the walk (and the added half-edges) is properly embedded in the Ihall. We say 
that the unfolded walk is knotred if the knot type of the associated (3,l) ball-pair is 
non-trivial. Since unfolded walks are not exponentially rare in the set of self-avoiding 
walks (Hammenley and Welsh 1%2), it is easy to prove: 

..-1lr hoc - rnm-npnt -DO+P-  th-, +Lo+ nf thn lnrt .,ad-.. T L - 6  :" :F...n _..- t.-- r L n  ""U, .,U1 * W , . ' p L . u . . L  &.'"L"' "lPU "LLll V L  ".I ,',DL "L,LL*.  111a1 0, II w s  llY,l,"CI L U G  

Theorem 22 .  Every (3,l) ball-pair h o t  type appears as a knotted arc with positive 
density in all except exponentially few sufficiently long unfolded self-avoiding walks 
on Z 3 .  Hence, all except exponentially few unfolded walks on Z' are knotted. 

It is easy to establish that (2.1) is valid for unfolded walks and, again, that the 
kcai &; ii, 

In this case it is straightfonvard (computationally) to check whether a walk is 
unfolded and, if it is, to compute the above measure of entanglement complexity. 
The problem is that most walks are not unfolded. Of course, they could be converted 
into unfolded walks by successive reflections, but this operation can create or destroy 
entanglements. 

There is one measure of entanglement complexity which can be defined for any 
arc in R3, and which does not require the careful construction of an ambient %ball 
to define the entanglement. One of the most appealing visual measures of knot 
complexity is crossing number. For the knot type of an embedded circle in Ispace, 
the crossing number is the minimum number of crossings possible in any projection, 
minimized Over all projections of all representatives of that knot type. Since every 
arc in R3 is unknotted (i.e. ambient isotopic to a subarc of the z-axis), any non- 
trivial complexity measure we define using Iz' as the ambient space will fail to be a 
knot type invariant. Nevertheless, for a fwed arc in R', we can define the crossing 
number of that arc to be the average value of the number of crossings in a projection, 
averaged over all projections (i.e. directions on the 2-sphere). We define the crossing 
number x of a self-avoiding walk as follows: For a given projection direction 3 which 
gives rise to a regular projection (all crossings are transverse crossings of a pair of 

is contained in a flow line of a perfectly conducting incompressible fluid, the crossing 
number defined earlier is related to the magnetic energy of that flow (Freedman 1988, 
Freedman and He 1991). We define the crossing number of the arc as 

&".2igeiim of $gA(-;))n :s at 

siran~sj, we iei denoie of cimsifi@ iii ta2i piojechan. If ;his 



Entanglement complexiy of se[f-avoiding walkr 6561 

The crossing number of an arc will he some non-negative real number, in general not 
an integer. For a given length n, we define the average crossing number (x), to be 
the average value of x, averaged over all n-step self-avoiding walks. We now prove 
a hasic result ahout the average crossing number: 

Theorem 2.3. (x), -+ 00 with n, and the divergence is at least linear in n. 

Proof. The proof relies on Kesten’s pattern theorem (Kesten 1963). We construct a 
K-pattern consisting of three tight trefoils, such that no straight line hits more than 
two of the three-balls which are defined by the tight trefoils, and such that every 
projection of this pattern mntains at least 3 crossings. Such a pattern is sketched in 
figure 2 Kesten’s theorem asserts that there exists a positive number E such that this 
pattern occurs at least En times on all except exponentially few n-step self-avoiding 
walks, for sufficiently large dues of n. For any walk in which this pattern appears 
en times, the crossing number of any projection of that walk will be at least 3m, 
which proves the theorem. 0 

Searching for knotted arcs contained in a long self-avoiding walk is difficult for 
two reasons: 

(1) Detecting that the union of the dual 3-cells to some suh-walk is a Shall is 
difficult. 

(2) Given that the union of the dual 3-cells is indeed a 3-halI, computing the 
knot type or the resulting hall-pair is difficult, because the ambient 3-hall is itself 
distorted, and must he straightened out before a projection of the arc in the hall can 
be determined. 

Searching for unfolded walks is also a fruitless task; they are not exponentially 
rare in the set of all walks, hut they are rare indeed. For these reasons, neither 
of these approaches (searching for knotted arcs or searching for unfolded walks) is 
satisfactory from a computational point of view. However, they do suggest some 
alternative schemes which retain some of their advantages, and we describe two of 
these schemes which close up the walk to form a polygon. 

For any given self-avoiding walk on Z 3  we can choose a direction at random 
and construct two parallel rays, whose origins are the two end-points of the walk and 
which are parallel to the prescribed direction. Almost all such rays will have irrational 
direction cosines and so will not pass through any of the vertices of Z 3 .  If we regard 
these two rays as meeting at the point at infinity we have a closed curve which 
will almost always he simple. Hence we can compute any of the usual measures 
of self-entanglement of a simple closed curve (such as A(-1)) for this associated 
simple closed curve, and use this as a measure of the entanglement complexity of the 
walk itself. In general, the value will depend on the chosen direction so it will he 
convenient to average over all directions. Once again we have the problem that this 
construction can create or destroy entanglements. For instance, a knotted arc which 
occurs in the walk may not he retained as a knot in the resulting polygon, since one 
of the rays might pass through the 3-hall associated with the knotted arc and lead to 
an unknotted polygon. 

Let F he any good measure of knot complexity, as defined in Soteros er a1 (1992). 
Such measures include number of prime factors, genus, bridge number minus one, 
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crossing number, unknotting number, span of any non-trivial Laurent polynomial, 
log(order), minor index, braid index minus one, etc. Given any such measure F ,  we 
define a related measure q51 of a self-avoiding walk as follows. For a given direction 
2, if we regard the rays as meeting at infinity, we obtain a polygon which we call 
P(2). We compute F(P(?)) ,  and average this over all directions 2. More precisely, 

E J Janse van Rensburg 

We can now average over all n-step self-avoiding walks to produce 
prove a basic result about these entanglement measures: 

Theorem 24. (+Jn -+ 00 with n, and the divergence is at least linear in n. 

Proof. Kesten’s pattern theorem asserts that the pattern sketched in figure 2 occurs 
with positive density on all but exponentially few sufficiently long self-avoiding walks. 
For each such walk, no matter which rays are added to the walk to form a polygon, 
the polygon will contain, with positive density, knotted arcs (of arbitrarily prescribed 
knot type) whose defining 3-balls do not intersect either of the added rays. The 
polygon is therefore always badly knotted, and divergence follows as in Soteros ef al 

We now 

jiW2j. 0 

We define an entangfemenf number c, of a self-avoiding walk as follows. For a 
given direction 2, if we regard the rays as meeting at infinity, we obtain a polygon 
which we call P ( 2 )  and we associate an indicator function x ( 2 )  with this polygon 
which is 1 if the polygon is knotted, and zero othenuise. We define the entanglement 
number of the walk as 

Theorem 25. All except exponentially few sufficiently long self-avoiding walks have 
entanglement number cl equal to one. 

Proof. The result follows from theorem (2.4) by taking F to be, for instance, 
W A ( - l ) ) .  U 

This result also gives information about the .rate at which the average 
entanglement number (cl), approaches 1 as n goes to infinity and we state this 
rcsuii UL LIIC IICXL UICUICIII; 

Theorem 26. The average entanglement number approaches unity exponentially 
rapidly as n goes to infinity. 

Proof. Let c: be the number of n-step self-avoiding walks with entanglement number 
strictly less than 1. We write (cl), as 

.- :_ .L̂  --.- .L 
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where the sum is over those walks w which have entanglement number strictly less 
than 1. Defining (Cl): as the average value of C1 over those n-step walks with C1 < 1, 
(2.5) can he written as 

(Cl), = 1 - (1 - (C,,",C",C,. 
Clearly 0 < (Cl): < 1 and, from theorem 25, 

U - e -Dnt<n)  cn/cn - 
for some /3 > 0. This suffices to prove the theorem. 

(2.7) 

0 

An alternative and apparently simpler closing scheme is to join the ends of the 
walk with a line segment. There is an immediate problem, in that this line segment 
w111 111 E,C"C"l1 p a r  L L " u " g r *  'CILILCJ U, L l l c i  I U L L L b C  Ju LIIUL LllG IG>urn,,g p,ygu,,  rl lrgl lr  

not be self-avoiding (and therefore not a simple closed curve). lb avoid this problem 
we first add to the ends of the walk two parallel line segments (of equal length, 
less than unity) in a randomly chosen direction, and then join up the ends of the 
figure, forming (almost always) a simple closed polygon. Once we have obtained 
this polygon derived from the walk, given any good measure of knot complexity F, 
we can obtain an associated measure of entanglement complexity q4z by averaging F 
over all possible directions. As before, we have that (c&), - 03 with n. One can 
also define an entanglement number Cz and prove that for n sufficiently large C2 is 
almost surely equal to one. Moreover, the average entanglement number approaches 
1 exponentially rapidly as n goes to infinity. The proofs are exactly analogous to 
those given for theorems 25 and 2.6. 

With this scheme one can also prove a useful theorem which deals with the relative 
degree oi entangiement of w a k  and poiygons with the same vaiue of n. 

Theorem 2.7. 

. .a1 :" "-^" +Ir.-.."l. ..nd:.."  ̂̂C .L  ̂ I".*:̂ ,. ^^ *L^* .I.̂  -.."..,.:-" "-1 ..I^" ...:,.I.+ 

If c: is the number of n-step self-avoiding walks with Cz < 1, then 

Prmp The set of n-step walks with C2 < 1 includes the set of n-step walks with 
C2 = 0 and for which the two vertices of degree 1 are unit distance apart. Every 
(rooted, directed) unknotted polygon with n + 1 edges can be converted to a walk of 
this type by deleting the last edge. Hence 

0 
"_. ,..<", where we have made use of (i.i). Since c ,  = e'.--\'.), (2.9j impiies (2.8j. 

3. Numerical results 

We have compared the two approaches of parallel rays and joined displaced end-points 
by gefig.rati.n.g a nmp!e of se!f-avoiding walks (with n edges, n < 2 W j ,  using a 
algorithm (La1 1969, Madras and Sokal 1987j, and estimating the value of A(-l), the 
order of the knot in the resulting polygon. In figure 3 we plot (IogA(-l)),, against 
n for each of the two approaches, where the angular brackets indicate averages over 
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6 
0 . 0 0 5  

500 ,000 1500 2000 
n 

Flgure 3. Monte Carlo estimates of (IogA(-l))" as a function of the length of the 
self-avoiding walk. A(-1) is calculated for the polygon obtained by either the 'parallel 
rays' (0) or the 'loin& displaced end-paints' (0) construction. The l i n a  are least-squares 
fits to the data. 

angles and Over the walks in the sample. The data are consistent with a linear 
increase, though we are not able to rule out a faster than linear divergence. The 
lines represent weighted least-squares fits (assuming linear behaviour), neglecting the 
data point at n = 250. The estimates of the slopes are (1.01 f 0.07) x lo-' and 
(1.06 f 0.07) x lo-' so that the error bars overlap and there is no evidence that the 
two measures of complexity are diverging at different rates. 

For the Same samples of walks we have also estimated (Cl), and (C2)n by 
estimating C, and C2 for each walk in the sample and averaging over the set of 
walks. We plot log(1- (Cl),) and log(1- (<2)n)  against n in figure 4. The lines 
represent weighted least-squares fits to the data, not including the points at n = 250. 
The estimated values of the slopes are essentially identical, and correspond to 

(C), = 1- Cexp[(-8.9f0.5) x 10-6n] (3.1) 

where the constant C has different values for the two cases. 
These methods can be used to characterize the dependence of the entanglement 

complexity on the 'solvent quality'. ?b mimic the effect of solvent quality we introduce 
a contact potential between neighbouring pairs of vertices as follows. For a given walk 
we count the number of pairs of vertices in the walk which are unit distance apart but 
not incident on a common edge. Let this number be m. We associate a (reduced) 
energy -m+ with the walk so that the walk has a weight proportional to exp(m4). 
Increasingly positive values of 4 correspond to decreasing solvent quality. For a fured 
value of n we have estimated (A(-l)), as a function of 4 and the results are shown 
(for TI = 1ooO) in figure 5. The order increases rapidly as 4 increases, suggesting 
that the entanglement complexity of linear polymers increases as the solvent becomes 
worse. 
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Figure 4 Monte Carlo =timates of log(1 - (Cl)") (0) and log(1 - ({z),,) (0) for 
self-avoiding walks, as a functinn nf the num_kher of e d p  in !he va!k: me !iner are 
lead-squares fits to Ule data. 

1.3 

0.01 0 . 1  0 . 1 5  0 . 2  0 . 2 5  0.3 

Figure 5. The dependence of entanglement complexily on solvent quality for walks with 
1wo edges. 

4: Discussinn 

The primary focus of this paper has been the investigation of two methods to describe 
and quantify the entanglement complexity of self-avoiding walks. Since walks are 
homeomorphic to 1-balls they are unknotted in the strict topological sense but we 
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have shown rigorously that one can arrive at reasonable measures of the entanglement 
complexity by converting a walk to a polygon and using measures of the entanglement 
complexity of the polygon to characterize that of the walk. Using these measures we 
have shown that almost all sufficiently long walks are self-entangled and we have 
examined the ndependence of these measures by a Monte Carlo calculation. In 
addition, by incorporating a pseudo-potential to reflect the effect of solvent quality 
on the conformational properties of a linear polymer, we have shown that the 
entanglement complexity increases rapidly as the solvent becomes worse. 
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